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Abstract. In this article we examine two methods of image compres-
sion. We compare the Discrete Cosine Tranform II, the basis of the
JPEG image format, with the Discrete Wavelet Transform. Specifically,
we examine how the Haar Wavelet can be used to compress images, and
how it compares with JPEG compression. The main focus of the article
is the Discrete Wavelet Transform and the theory behind it.

1. Introduction

On a daily basis, we deal with large amounts of digital information. Text,
audio, video, and images are just a few examples of the types of “data” we
encounter. All of these things require storage space. Compression enables
us to store large amounts of data in a smaller space.

Each type of data (text, audio, etc.) usually has one, or multiple, algo-
rithms that work particularly well for that specific kind of data. There are
also some general algorithms that work on almost any type of data. Also,
each algorithm can be classified as “lossless” or “lossy.” Some methods can
be both lossy and lossless. A lossless compression algorithm retains all of the
original meaning so that it can be fully restored from the compressed data.
A lossy compression algorithm “loses” some of the original information, but
retains enough so that the original meaning can be recovered.

The most popular image format in use today is the Joint Photographic
Experts Group format – JPEG. This format is based on the Discrete Cosine
Transform II, commonly known as the DCT. The DCT can be used to
compress multiple types of data. In addition to JPEG pictures, the DCT,
in modified form, can be found on iPods all over the world. It is used to
compress the music found on these devices [Liu and Lee(1999), sec. 0]. No
matter how it is used, the DCT is a lossy compression scheme.1

The Discrete Wavelet Transform (DWT) can also be used for multiple
types of data [Graps(1995), sec. 4.2]. Unlike the DCT, though, the DWT
can be a lossless compression scheme [Mulcahy(1996), sec. 5].

Thank you to Dr. David B. Williams for his patience and advice.
1Actually, the full JPEG specification includes a lossless method. But the most widely

used specification is the JPEG File Interchange Format, JFIF, which is strictly a lossy
format. In this article JPEG refers to JFIF [CCI(1992), sec. 4.2].
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2. DCT Compression

2.1. Overview. We will begin by examining the standard JPEG algorithm.
It is the standard image format used all over the World Wide Web, and it
is a lossy compression method. On almost every modern digital camera the
default image format is JPEG. The format has become ubiquitous in today’s
digital world. But how does it work?

As mentioned in section 1, the JPEG image format is an implementation
of the Discrete Cosine Transform. As defined in [Wallace(1991), sec. 4],
the JPEG algorithm consists of three stages: the Foward Discrete Cosine
Transform (FDCT), a quantization step, and an entropy encoding step. We
will leave entropy encoding out of the calculations in this paper for the sake
of simplicity.

Before we can apply the JPEG algorithm to an image, we must define
what an image is and how the JPEG algorithm works. Consider a 2m × 2m

pixel grayscale image to be a 2m × 2m matrix A, with entries whose values
are in the range [0, 255]. Each entry in A is the level of gray in the image at
pixel Ai,j . Given this relationship, we can apply the FDCT to encode the
image and quantize the results to achieve some level of compression.

The FDCT is defined as [Wallace(1991), sec 4.1]:

(1) Wp,q =
1
4
C(p)C(q)

 n∑
i=1

n∑
j=1

Ai,j cos
(

(2i+ 1)pπ
16

)
cos
(

(2j + 1)qπ
16

)

where

C(t) =

{
1√
2
, t = 1

1, otherwise

and n = 2m is the dimension of the 2m × 2m image matrix being encoded.
Since the JPEG standard calls for the image being encoded to be broken into
8× 8 blocks, we let n = 8 and encode each block of the image independently
of others. If the dimensions of the matrix A are not a power of 2, the matrix
can be padded with columns and/or rows of zeros to achieve the required
dimension.

Of particular note here is the coefficient Ai,j , which is the image data at
the i, j position of our uncompressed image matrix A. The result of the
transform is a new value, Wp,q, for the transformed matrix W at the p, q
position.

For example, consider the image matrix
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(2) A =



64 60 58 60 60 59 72 77
63 58 138 61 59 58 50 116
148 134 138 106 116 81 54 131
92 61 126 97 100 106 72 72
61 59 116 61 81 59 61 130
61 111 81 58 58 58 80 38
63 59 59 58 59 58 113 111
63 61 60 60 60 59 58 144


.

Applying the FDCT gives the transformed matrix
(3)

W =



633.125 −6.778 35.514 −69.589 13.875 −23.986 43.603 29.271
32.875 42.209 −23.966 −5.645 4.698 −0.912 33.066 10.690
−63.831 −43.730 39.309 −3.295 12.160 2.397 −20.375 −17.778
−81.439 −14.794 −5.017 13.552 −43.187 17.017 −41.645 3.919
−25.875 −35.737 −13.817 6.886 19.875 2.075 18.576 −4.202
17.534 0.565 −12.169 51.186 −5.314 29.399 −30.966 −8.670
25.222 53.900 2.874 23.990 1.592 −22.004 −29.809 −20.828
32.208 −14.640 34.963 −17.711 36.033 −18.130 −0.810 5.338


.

If each nonzero entry takes one byte of storage space, we clearly have
not compressed this image. There were only nonzero entries before the
transformation, and there are only nonzero entries after the transformation.
To achieve compression, we apply a quantization step. We do this by defining
a quantization matrix Q, divide each entry in W by the corresponding entry
in Q, and round to the nearest integer. That is, Zi,j = round(Wi,j

Qi,j
), where

Z is the newly compressed image matrix. The entries in Q will define the
level of compression.

Continuing the example, if we let Q be defined as in [Wallace(1991), sec.
7.3], we have

(4) Q =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


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and

(5) Z =



40 −1 4 −4 1 −1 1 0
3 4 −2 0 0 0 1 0
−5 −3 2 0 0 0 0 0
−6 −1 0 0 −1 0 −1 0
−1 −2 0 0 0 0 0 0
1 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0



after quantization. Notice that we now have one relatively large entry in the
top left of the matrix, several small entries, and many zero entries. The DCT
with quantization leaves us a matrix with one overall average coefficient and
sixty-three detail coefficients that are “near zero” [Wallace(1991), sec. 4.1].
Because of the rounding that was performed, the DCT with quantization
transformed the data and eliminated some details from the image. Different
quantization matrices will retain more, or fewer, details as desired by the
users. By storing only the nonzero entries of Z, we can store an approximate
representation of A in a smaller space.

By defining the inverse quantization as Ti,j = Zi,jQi,j , and the Inverse
Discrete Cosine Transform (IDCT) as

(6) Ai,j =
1
4

 n∑
i=1

n∑
j=1

C(p)C(q)Tp,q cos
(

(2i+ 1)pπ
16

)
cos
(

(2j + 1)qπ
16

)

we can decompress the image. We will call this decompressed image matrix
B.

So if we first apply the inverse quantization, and then the IDCT, to our
compressed image Z, we get

(7) B =



73 105 101 69 64 69 36 31
89 114 152 118 76 88 50 87
167 172 199 164 88 83 9 90
139 154 151 136 116 100 31 58
13 82 91 72 73 46 82 51
32 108 76 39 45 11 60 18
28 28 6 18 52 56 51 40
27 9 26 32 11 21 21 62


.
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Clearly, B 6= A. But if we take the difference of A and B,

(8) A−B =



−9 −45 −43 −9 −4 −10 36 46
−26 −56 −14 −57 −17 −30 0 29
−19 −38 −61 −58 28 −2 45 41
−47 −93 −25 −39 −16 6 41 14
48 −23 25 −11 8 13 −21 79
29 3 5 19 13 47 20 20
35 31 53 40 7 2 62 71
36 52 34 28 49 38 37 82


we see that they are relatively the same. The restored matrix (7) is close
enough to (2) that they should be visually similar when viewed as a grayscale
image.

2.2. Application. Consider Figure 10 on page 18. We see in this figure a
fractal image in its uncompressed original state as generated by Mandel-
brot on Cocoa (Appendix A). That is, all of the data originaly generated
to represent the image is intact.

Now consider Figure 11 on page 19. Notice that Figure 11 is not as clear
as Figure 10. In particular, the region between the center fractal and the
left side is not as well defined. The lack of detail in the restored image is a
result of the DCT compression with a threshold value set to 20. This results
in a Mean-Squared Error (MSE) equal to 95.97 between the original image
and the restored image. We calculate the MSE by Equation (10), where m
and n are the dimensions of the image matrix.

C = A−B(9)

MSE =

∑m
j=1

∑n
i=1C

2
i,j

m · n
(10)

The MSE gives a metric by which we can determine the visual quality of
the restored image as compared to the original. A low MSE value indicates
a visually accurate restored image. A higher MSE indicates a restored image
with increasingly noticeable distortion.

If we define the compression ratio (CR) to be the ratio of nonzero entries
in A to the number of nonzero entries in Z, we find that the DCT, applied
to Figure 10 with threshold level 20, results in a compression ratio of 5.9 : 1.

(11) CR =
262144
44122

= 5.9

Using Matlab’s spy function, we can visualize the MSE and the CR. In
Figure 1 on page 6 we see a spy plot of the original image matrix A.

The blue color represents nonzero entries in the matrix. Clearly, the
original image has no nonzero entries. This is also true of the restored
image matrix B. But if we take the difference of A and B, we have a new
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Figure 1. Spy plot of the original image matrix

Figure 2. Spy plot of the MSE

matrix C that represents the error between A and B. The plot of which is
in Figure 2.

The blue areas in Figure 2 represent the error between Figure 10 and
Figure 11.
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Figure 3. Spy plot of the CR

A visual representation of the compression ratio is the spy plot of the
compressed image matrix Z. This plot is found in Figure 3.

The blue areas in Figure 3 represent the nonzero entries in Z. Clearly,
there are far more zeros in Z than there are in A. Therefore, it takes far
less space to store Z than it does A.

This example shows us how the DCT compression method affects the
quality of the image. There is an inverse relationship between the compres-
sion level and the visual quality of the restored image. This is demonstrated
by the MSE plot. If the MSE plot were solid white, there would be no
difference between A and B.

We will see that this is true with the DWT as well, when thresholding is
applied. What we want to find out is how the DWT visually compares to
the DCT for approximately equal compression ratios.

3. DWT Compression

3.1. Overview. Just as the DCT is a finite series expansion, so is the Dis-
crete Wavelet Transform. There is a key difference, though. Whereas the
DCT relies on all values of the function being approximated, the DWT relies
on only a few [Davidson and Donsig(2002)]. Therefore, the DWT has better
local properties than the DCT. For example, they are local in frequency and
time [Brani Vidakovic(1994), sec. 1]. This means that while the DCT has
trouble at the edges of its 8× 8 blocks [Strang(1999), sec. 7], the DWT has
the potential to be more accurate in these areas.
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Figure 4. Plot of Eq. (13).

Consider

(12)
[
45 55 128 128 5 10 50 50

]
as a eight pixel grayscale image. We can represent this image as a piecewise
constant function

(13) f(x) =



45 x ∈ [0, 1
8)

55 x ∈ [18 ,
1
4)

128 x ∈ [14 ,
1
2)

5 x ∈ [12 ,
5
8)

10 x ∈ [58 ,
3
4)

50 x ∈ [34 , 1).

on the interval [0, 1) and plot it as in Figure 4.
If we define the Haar scaling functions as

(14) φ(x) =

{
1, x ∈ [0, 1)
0, otherwise

(15) φj
k(x) = φ(2jx− k), where j ∈ N and k = 0, 1, . . . (2j − 1)

and V3 = span({φ3
0, φ

3
1, . . . , φ

3
7}), we can represent this image as a sum of

the φ3
k(x). This is possible because the set of functions {φ3

k(x)} form a basis
for a function space V3 on the interval [0, 1). To see this, define the inner
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(a) φ3
0(x) (b) φ3

1(x) (c) φ3
2(x)

(d) φ3
3(x) (e) φ3

4(x) (f) φ3
5(x)

(g) φ3
6(x) (h) φ3

7(x)

Figure 5. V3 basis functions.

product of two functions to be:

(16) < f(x)|g(x) >=
∫ ∞
−∞

f(x)g(x) dx.

If < f(x)|g(x) >= 0, then the two functions are orthogonal. Otherwise,
they are not orthogonal [Eric J. Stollnitz(1995), sec. 3].

We can see from Figure 5 that any two of the functions are orthogonal
to each other. For example φ3

0(x) and φ3
1(x) are plotted in Figure 5 (a) and

Figure 5 (b), respectively. Everywhere φ3
0(x) is nonzero, φ3

1(x) is zero. So
φ3

0(x) and φ3
1(x) are nonzero on disjoint intervals and thus < φ3

0(x)|φ3
1(x) >=
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Figure 6. Basis functions for the 8 pixel image.

0. However, clearly < φ3
0(x)|φ3

0(x) >6= 0. Since the φ3
k(x) span V3 and are

mutually orthogonal, they necessarily form a basis for V3.
Returning to our eight pixel image (12), we can plot the individual pixels

by associating the color value of each pixel with each of the eight basis
functions of V3. Then we have the functions:

45φ3
0(x) 55φ3

1(x) 128φ3
2(x)

128φ3
3(x) 5φ3

4(x) 10φ3
5(x)

50φ3
6(x) 50φ3

7(x).

Plotting all eight functions on the same plot gives us Figure 6. We can easily
see how each function contributes to the overall plot if we plot the function,

f(x) = 45φ3
0(x)+55φ3

1(x)+128φ3
2(x)+128φ3

3(x)+5φ3
4(x)+10φ3

5(x)+50φ3
6(x)+50φ3

7(x).

The plot is exactly the same as the plot in Figure 4 on page 8. Thus, we
have a way of representing an image as a sum of dyadic scaling functions.

3.2. Averaging and Differencing. The Haar scaling function (14) allows
us to represent an image as a piecewise constant function on an interval,
but it does nothing to compress the image. This is where the method of
averaging and differencing comes into play.

Given a set of values, such as the eight values in our eight pixel image
(12), we first pair the values. Then we average the pairs, and take the
difference of the first value in the pair and the average. Thus the original
set can be represented by a set of averages and a set of detail coefficients
[Mulcahy(1996), sec. 3].
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So for our eight pixel image, we would first pair 45 with 55, 128 with 128,
5 with 10, and 50 with 50. We would then average these pairs to get the set

(17)
[
50 128 7.5 50

]
.

Then we subtract each element in (17) from the first element in each pair
to get

(18)
[
−5 0 −2.5 0

]
.

Thus we have transformed the image from (12) into

(19)
[
50 128 7.5 50 −5 0 −2.5 0

]
.

The blue averages are merely an average of two adjacent pixels. So their
plot, as seen in Figure 7 on page 12, is roughly the same as the original plot
in Figure 4 on page 8.

Recall that we used a function in the function space V3 to plot our original
image. Here, we have a function

(20) v(x) = 50φ2
0(x) + 128φ2

1(x) + 7.5φ2
2(x) + 50φ2

3(x)

that is in the function space V2 = span({φ2
0, φ

2
1, φ

2
2, φ

2
3}). As a result, we

have clearly lost some detail in the image. So we need some way to represent
the missing detail in this lower function space. To do so, we will define the
Haar mother wavelet [Mulcahy(1996), sec. 4] as

(21) ψ(x) =


1, x ∈ [0, 1

2)
−1, x ∈ [12 , 1)
0, otherwise

(22) ψj
k(x) = ψ(2jx− k), where j ∈ N and k = 0, 1, . . . (2j − 1).

We can then define a function spaceW2 = span({ψ2
0, ψ

2
1, ψ

2
2, ψ

2
3}). By the

same argument we used to support the φ3
ks as a basis for the function space

V3, we can justify the ψ2
ks as a basis for this new function space. If we let

the coefficients of ψ2
k(x) be the detail coefficients, or wavelet coefficients, we

have the function:

(23) w(x) = −5ψ2
0(x)− 2.5ψ2

2(x).

The plot of which can be seen in Figure 8 on page 12.
Now if we plot

(24)
v(x) +w(x) = 50φ2

0(x) + 128φ2
1(x) + 7.5φ2

2(x) + 50φ2
3(x)− 5ψ2

0(x)− 2.5ψ2
2(x)

we will get the same plot as in Figure 4.
Notice in Equation 19 that after the first transformation we have two zero

entries in the image. Assuming zero entries require no storage space as we
did in Section 2.1, we have already eliminated two bytes from this image.
Not only have we saved two bytes of storage space, but we have not lost any
information. The original image (12) can be perfectly reconstructed from
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Figure 7. Four averages from the eight pixel image.

Figure 8. Four details from the eight pixel image.

(19). Simply reverse the steps performed in the transformation. And, as we
have seen, we can reconstruct the original image from the compressed state
by plotting Equation 24.

We can continue transforming (12) until we have only one average and
seven detail coefficients. After performing averaging and differencing once to
obtain (19), we repeat the process. Only this time, we average and difference
only the first four entries. This will retain the original details and give us
two additional detail coefficients. We would then have

(25)
[
89 28.75 −39 −21.25 −5 0 −2.5 0

]
.
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One final application of averaging and differencing gives

(26)
[
58.875 30.125 −39 −21.25 −5 0 −2.5 0

]
.

We have still only managed two bytes of compression after the second and
third transformations. But if we set all wavelet coefficients whose absolute
values are less than some threshold, say 10, equal to zero, we get

(27)
[
58.875 30.125 −39 −21.25 0 0 0 0

]
.

and two extra bytes of compression. However, we have now lost some of the
detail in the original image. Therefore we cannot perfectly reconstruct the
image; we have introduced lossy compression. If we reconstruct this lossily
compressed image, we get

(28)
[
50 50 128 128 7.5 7.5 50 50

]
where the red entries are different from the originals in (12). Clearly this is
not the same image, but it is a very close approximation. Each wrong entry
only differs from the original by, at the worst, ±5.

3.3. Theory. We have seen in the previous two sections how functions in
a higher function space, say V3, can be represented by a sum of functions
from other spaces (V2 and W2 were shown in the example). In this section
we will attempt to show this fact in a more general way.

Recall that we defined V3 = span({φ3
0, φ

3
1, . . . , φ

3
7}). In more general

terms, let Vj = span({φj
0, φ

j
1, . . . , φ

j
k}) where k = 2j − 1. Then Vj is the set

of all functions that are piecewise continuous on disjoint subintervals of [0, 1)
with length 2−j . Let j ∈ N and m,n = 0, 1, . . . , k. Then for m 6= n, φj

m(x)
and φj

n(x) are nonzero on mutually disjoint intervals. Thus < φj
m|φj

n >= 0.
If m = n then

< φj
m|φj

n >=
∫ 1

0
φj

mφ
j
n dx =

∫ 1

0

[
φj

m

]2
dx = 2−j 6= 0.

Thus the φj
m form an orthogonal set of functions. Since the φj

m are mutually
orthogonal, and they span Vj , they necessarily form an orthogonal basis for
that function space.

We will similarly show that Wj is a function space with an orthogonal
basis {ψj

k}. Now let Wj = span({ψj
0, ψ

j
1, . . . , ψ

j
k}), where j ∈ N and k =

0, 1, . . . , 2j − 1 as before, and m,n = 0, 1, . . . , k. If m 6= n, < ψj
m|ψj

n >= 0
since ψj

m(x) and ψj
n(x) are nonzero on mutually disjoint intervals. If m = n

then

< ψj
m|ψj

n >=
∫ 1

0

[
ψj

m

]2
dx = 2−j 6= 0.

Therefore the ψj
m also form an orthogonal set of functions. Since the ψj

m

are mutually orthogonal and span Wj , they form a basis for that function
space.
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Notice that we have a set of nested subspaces Vj ⊃ Vj−1 ⊃ · · · ⊃ V1 ⊃
V0, where each consecutive subspace contains fewer and fewer basis func-
tions. To show that this is true, let u ∈ Vj−1. Then, for some constants
cj−1
0 , cj−1

1 , . . . , cj−1
k , u can be written as a sum of the basis functions:

u = cj−1
0 φj−1

0 + cj−1
1 φj−1

1 + · · ·+ cj−1
k φj−1

k ,

where, as usual, k = 0, 1, . . . , 2j − 1. But for example, φ2
0 = φ3

0 + φ3
1,

φ2
1 = φ3

3 + φ3
4, so in general, φj−1

k = φj
2k + φj

2k+1. Thus we have

u = cj−1
0 φj

0+cj−1
0 φj

1+cj−1
1 φj

2+cj−1
1 φj

3+· · ·+cj−1
k φj

2k+cj−1
k φj

2k+1, k = (2j−1).

Thus u ∈ Vj which implies Vj−1 ⊂ Vj . Clearly this holds true for any j ∈ N.
Now that we have established the function spaces Vj and Wj , and the

nested nature of Vj , we want to show that Vj−1⊕Wj−1 = Vj . Let f(x) ∈ Vj

for some j ∈ N. Then, in terms of the basis functions φj
k, for k = 0, 1, . . . , 2j−

1,
f(x) = cj0φ

0
0 + cj1φ

1
0 + cj2φ

1
1 + · · ·+ cjkφ

j
k

and some constants cj0, c
j
1, c

j
2, . . . , c

j
k.

Using the method of averaging and differencing, we find

f(x) = aj−1
0 φj−1

0 +aj−1
1 φj−1

1 +· · ·+alφ
j−1
l +dj−1

0 ψj−1
0 +dj−1

1 ψj−1
1 +· · ·+dj−1

l ψj−1
l

where

aj−1
l =

cj2l + cj2l+1

2
and dj−1

l =
cj2l − c

j
2l+1

2
for l = 0, 1, . . . , (2j−1 − 1). Thus f(x) ∈ Vj−1 ⊕Wj−1, which implies Vj ⊆
Vj−1 ⊕Wj−1.

Now let f(x) ∈ Vj−1 ⊕Wj−1. From the previous part, we know that

f(x) = aj−1
0 φj−1

0 +aj−1
1 φj−1

1 +· · ·+alφ
j−1
l +dj−1

0 ψj−1
0 +dj−1

1 ψj−1
1 +· · ·+dj−1

l ψj−1
l

in terms of Vj−1 ⊕Wj−1. By reversing the averaging and differencing, we
have

cjk = aj−1
l + dj−1

l and cjk+1 = aj−1
l − dj−1

l

for k = 0, 2, 4, . . . , (2j − 2) and l = 0, 1, . . . , (2j−1 − 1). Thus

f(x) = cj0φ
0
0 + cj1φ

1
0 + cj2φ

1
1 + · · ·+ cjkφ

j
k ∈ V

j

for k = 2j − 1. Therefore Vj−1 ⊕Wj−1 ⊆ Vj .
The result of this discussion is that we are able to write a function Vj as a

direct sum of its nested subspaces and their corresponding wavelet function
spaces Wj . For example,

V3 = V2 ⊕W2 = V1 ⊕W1 ⊕W2 = V0 ⊕W0 ⊕W1 ⊕W2

and in general,
Vj = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wj−1.

This is known as a Multiresolution analysis (MRA) [Mulcahy(1996), sec. 7].
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A MRA allows us to analyze a signal at finer and finer details as j in-
creases. When j increases by 1, the number of intervals on which the signal
is analyzed is doubled. Also, each new interval is half the length of the pre-
vious intervals. This gives us the flexibility to eliminate unwanted deatils,
details of such low value that they will have little impact on the recon-
struction. By eliminating the details whose absolute value is less than some
threshold we obtain a compressed signal.

Furthermore, if we redefine φj
k(x) = 2j/2φ(2jx−k) and ψj

k(x) = 2j/2ψ(2jx−
k) we achieve normalization. That is, form,n = 0, 1, . . . , 2j−1, < φj

m|φj
n >=

1 and < ψj
m|ψj

n >= 1 when m = n. When m 6= n, < φj
m|φj

n >= 0 and
< ψj

m|ψj
n >= 0. Therefore the φj

m and the ψj
m are orthonormal. We will

continue using the previous definitions for the numerical examples in Section
3.4 to keep the calculations simple, but normalization gives better compres-
sion results [Eric J. Stollnitz(1995), sec. 6]. The program used to compress
the images, Wavelet (Appendix A), uses the normalized functions.

3.4. Haar Wavelet Application. So far, we have only considered images
to be a 2j row vector. We can extend the Haar system defined in Section
3.3 to work with 2j × 2j matrices by first performing the operations on the
rows, and then the columns. So if we have the 4× 4 image matrix

10 20 30 40
20 40 60 80
30 60 90 120
40 80 120 160

 .
We can average and difference the rows until we get

25 −10 −5 −5
50 −20 −10 −10
75 −30 −15 −15
100 −40 −20 −20


with the detail coefficients highlighted in blue and the averages in black.
Finally, we transform the columns to get

62.5 −25 −12.5 −12.5
−25 10 5 5
−12.5 5 2.5 2.5
−12.5 5 2.5 2.5

 .
Notice that, as before, we now have only one average. Again, this allows

us to apply thresholding in such a fashion that we only alter the detail
coefficients. Also of note is that we have not yet reduced the amount of
storage space required to store this image. We have a 1 : 1 transform of
the original “image” to the transformed “image.” Thus we can completely
restore the original from the transformation. If we set the entries less than
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(a) DCT Compressed Error Image (b) Wavelet Compressed Error Image

Figure 9. A side-by-side comparison of the error image plots.

|5| to 0 we achieve a possible four bytes of compression:
62.5 −25 −12.5 −12.5
−25 10 5 5
−12.5 5 0 0
−12.5 5 0 0

 .
Reversing the averaging and differencing column-wise and then row-wise,

we get an image that is approximately the same as the original:


7.5 22.5 27.5 42.5
22.5 37.5 62.5 77.5
27.5 62.5 87.5 122.5
42.5 77.5 122.5 157.5

 ≈


10 20 30 40
20 40 60 80
30 60 90 120
40 80 120 160

 .
If we apply this process to our 512 × 512 pixel fractal image, and apply

a threshold value of 48, we get the restored image as seen in Figure 12 on
page 20. This image is clearly different from the original. The compression
ratio for this image is 5.9 : 1, and it has a mean-squared error of 100.30.
Recall that the CR for Figure 11 (page 19) was also 5.9 : 1, but its MSE
was 95.97. If we look at the error plots for each image, as seen in Figure
9, we get a clear picture of how this small difference in the MSE affects the
accuracy of the restored image.

We can easily see that the Haar wavelet, at an equivalent level of com-
pression, alters the image much more than the DCT. But what happens if
we increase the compression level?

If we set the threshold level to 70 for the DCT and to 150 for the Haar
wavelet, we get a CR of approximately 41 and MSEs of 224.92 and 1286.51,
respectively. The resulting images for the DCT compression can be seen in
Figure 13 on page 21 and the wavelet compression in Figure 14 on page 22.
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Notice that the DCT causes blurring at all points of the image, but the
wavelet seems to keep some of the finer details clear. This leads to the con-
clusion that the wavelet method has more potential than the DCT method.
The restored wavelet image may have more distortion in less active areas of
the image than the DCT restored image, but the wavelet image retains more
information in the active areas. So finer, possibly more important, details
are retained at higher levels of compression with the DWT than with the
DCT.

4. Conclusion

In the preceding sections, we define the Discrete Cosine Transform and
how it is used in the JPEG picture compression standard. We then explored
the theory behind the Discrete Wavelet Transform, specifically the Haar
wavelet, and compared using it as an image compressor to the DCT.

We learned that the DCT does a good job of compressing images while
retaining overall visual image quality. At comparable compression ratios, the
DWT was less visually appealing but retained finer details. We concluded
the discussion with an extreme comparison between the DCT and the DWT.
In this extreme case, we learned that the DWT does a better job of retaining
details at higher compression ratios than does the DCT.

Appendix A. Software Used

Several pieces of software were used in the development of this article.
Namely:

• Mandelbrot on Cocoa [http://hp.vector.co.jp/authors/VA026611/
index_e.html]: This excellent program was used to generate the
fractal image seen throughout this article. The mdl file for the spe-
cific fractal location can be found on this article’s web site.
• The Gimp [http://www.gimp.org/]: An open source photo edit-

ing application. This was used to convert the image output from
Mandelbrot on Cocoa to TIFF from PNG format. It was also used
to re-convert the TIFF images back into PNG images for inclusion
in this article.
• DCT Lab [http://www.sprljan.com/nikola/matlab/dctlab.html]:

An easy to use, open source, Matlab toolbox designed specifically for
examining the error inherent in the JPEG file format. A modified
version of this toolbox is available on this article’s website. The
modified version exports the compressed image Z to the current
workspace so that the nonzero entries can be counted.
• Maple 11 [http://www.maplesoft.com/]: Maple 11 was used to

implement the FDCT and IDCT in 2.1. The worksheet is available
on the website for this article.
• Wavelet [http://student.claytonstate.net/~jsumners/wavelet/]:

Written specifically for this article. This software reads an eight bits
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Figure 10. Uncompressed 512x512 image.

per pixel, greyscale, TIFF of 2n × 2n dimension and performs the
desired Haar wavelet compression.

Appendix B. Images
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Figure 11. DCT Lab compressed 512x512 image.



20 JAMES SUMNERS

Figure 12. Wavelet compressed 512x512 image.
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Figure 13. DCT compressed image with threshold level 70.
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Figure 14. Wavelet compressed image with threshold level 150.
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