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Consider the problem:

Construct a Taylor polynomial approximation that is accu-
rate within 1

2 × 10−3, over the given interval, for the function:
f(x) = e−x where x ∈ [0, 1]. Expand about the point x0 = 0.

Also, recall Taylor’s Theorem:1

Taylor’s Theorem:
If the function f possesses continuous derivatives of orders 0, 1, 2, . . . , (n+1)
in a closed interval I = [a, b], then for any c and x in I,

f(x) =
n∑

k=0

fk(c)
k!

(x− 6)k + En+1 (1)

where the error term En+1 can be given in the form

En+1 =
f (n+1)(ξ)
(n + 1)!

(x− c)n+1 (2)

Here ξ is a point that lies between c and x, and depends on both.

Our goal is to determine how many terms in a Taylor polynomial are
required to meet the desired accuraty of 1

2 × 10−3. To do this, we must
determine when Eq. (2) is greater than or equal to 1

2 × 10−3. Essentially,

1Numerical Methods and Computing, Fifth Edition by Ward Cheney and David Kincaid
[pg. 22].
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we want to find the maximum values for |f (n+1)(ξ)| and |(x− c)(n+1)| in our
interval. Let’s begin by examining the first few derivatives of e−x.

f ′(x) = −e−x f ′′(x) = e−x

f3(x) = −e−x f4(x) = e−x

Of course, the derivative of ex is ex and the derivative of e−x is just
going to alternate between positive and negative values of e−x. Thus,
e−1 = 0.367879 and e−0 = 1 giving us the maximum value of |f (n+1)(ξ)|
at ξ = 0. And so Eq. (2) becomes:

En+1 =
1

(n + 1)!
(x− c)n+1 (3)

Now we must maximize |(x−c)n+1|. In this problem it is simple. We are
expanding about x0 = 0 so c = 0 and x ranges from 0 to 1. So, it doesn’t
matter what the value of n is; the maximum value of (x − c)n+1 is always
going to be 1 on our interval. From Eq. (3) we have:

En+1 =
1

(n + 1)!
(1)n+1 =

1
(n + 1)!

(4)

Which gives us the equation:

1
(n + 1)!

≤ 1
2
× 10−3

Solving this equation by hand can be tedious. Using technology to solve
this equation is a much more judicious way to solve this inequality. For ex-
ample, on a TI-89 one could enter “0 → n:While 1

(n+1)! > 1
2 ∗ 10−3:n+1

→ n:EndWhile:Disp n:DelVar n”. The n displayed at the end of the
loop execution will be the number of terms necessary for a Taylor poly-
nomial approximation of e−x accurate to 1

2 × 10−3. In this case, n = 6 and
T6(x) = 1− x + x2

2 − x3

6 + x4

24 −
x5

120 + x6

720 . Thus:

T6(0.5) ≈ 0.6065321181
e−0.5 ≈ 0.6065306597
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