Determing Accuracy Of A Taylor Polynomial In An Interval

James Sumners

March 8, 2006

Consider the problem:

Construct a Taylor polynomial approximation that is accurate within $\frac{1}{2} \times 10^{-3}$, over the given interval, for the function: $f(x) = e^{-x}$ where $x \in [0, 1]$. Expand about the point $x_0 = 0$.

Also, recall Taylor's Theorem:¹

Taylor's Theorem:

If the function f possesses continuous derivatives of orders $0, 1, 2, \ldots, (n+1)$ in a closed interval I = [a, b], then for any c and x in I,

$$f(x) = \sum_{k=0}^{n} \frac{f^k(c)}{k!} (x-6)^k + E_{n+1}$$
(1)

where the error term E_{n+1} can be given in the form

$$E_{n+1} = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-c)^{n+1}$$
(2)

Here ξ is a point that lies between c and x, and depends on both.

Our goal is to determine how many terms in a Taylor polynomial are required to meet the desired accuraty of $\frac{1}{2} \times 10^{-3}$. To do this, we must determine when Eq. (2) is greater than or equal to $\frac{1}{2} \times 10^{-3}$. Essentially,

¹Numerical Methods and Computing, Fifth Edition by Ward Cheney and David Kincaid [pg. 22].

we want to find the maximum values for $|f^{(n+1)}(\xi)|$ and $|(x-c)^{(n+1)}|$ in our interval. Let's begin by examining the first few derivatives of e^{-x} .

$$f'(x) = -e^{-x} \quad f''(x) = e^{-x}$$

$$f^{3}(x) = -e^{-x} \quad f^{4}(x) = e^{-x}$$

Of course, the derivative of e^x is e^x and the derivative of e^{-x} is just going to alternate between positive and negative values of e^{-x} . Thus, $e^{-1} = 0.367879$ and $e^{-0} = 1$ giving us the maximum value of $|f^{(n+1)}(\xi)|$ at $\xi = 0$. And so Eq. (2) becomes:

$$E_{n+1} = \frac{1}{(n+1)!} (x-c)^{n+1}$$
(3)

Now we must maximize $|(x-c)^{n+1}|$. In this problem it is simple. We are expanding about $x_0 = 0$ so c = 0 and x ranges from 0 to 1. So, it doesn't matter what the value of n is; the maximum value of $(x-c)^{n+1}$ is always going to be 1 on our interval. From Eq. (3) we have:

$$E_{n+1} = \frac{1}{(n+1)!} (1)^{n+1} = \frac{1}{(n+1)!}$$
(4)

Which gives us the equation:

$$\frac{1}{(n+1)!} \le \frac{1}{2} \times 10^{-3}$$

Solving this equation by hand can be tedious. Using technology to solve this equation is a much more judicious way to solve this inequality. For example, on a TI-89 one could enter " $0 \rightarrow n$:While $\frac{1}{(n+1)!} > \frac{1}{2} * 10^{-3}$:n+1 \rightarrow n:EndWhile:Disp n:DelVar n". The *n* displayed at the end of the loop execution will be the number of terms necessary for a Taylor polynomial approximation of e^{-x} accurate to $\frac{1}{2} \times 10^{-3}$. In this case, n = 6 and $T_6(x) = 1 - x + \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{24} - \frac{x^5}{120} + \frac{x^6}{720}$. Thus:

 $T_6(0.5) \approx 0.6065321181$ $e^{-0.5} \approx 0.6065306597$